Organic Chemistry

Chapter 1 Bonding and Isomerism

Ionic Compounds

- Ionic Compounds: e-are transferred; Cation (+) \& anion (-).
- Opposite charge creates bond.
- Occurs when compound is made of a metal \& a nonmetal.
- Electron dot structures for:

As Ar Rb Ga O

- Electron movement when Rb combines with O : $\mathrm{Rb}+\mathrm{Rb}+\mathrm{O} \rightarrow$

Electronegativity

- Electropositive atoms: give up electrons and form cations (metals).
- Francium (Fr) is the most electropositive
- Electronegative atoms: gain electrons and form anions (nonmetals).
- Fluorine (F) is the most electronegative
, Li vs. Be? Most electropos: \qquad
- Li or Na? Most electropos:

Most electroneg:
Most electroneg: \qquad

Covalent Bonds: Nonpolar

-Covalent Bonds: sharing_of electrons;similar electronegativities

- Between two non-metals and/or hydrogen
> Non-polar: Identical atoms; similar electronegativities
\Rightarrow Exp: $\mathbf{H}_{\mathbf{2}}$
- Shared pairs represented by : or -

Covalent Bonds: Polar

> Polar: Unequal sharing; large differences in electronegativity (pg 15)
> Exp: HCl
, NOTE: H is not in same "row" or "family" as the other non-metals;it will ALWAYS be lower in electronegativity \& be the atom that becomes partially positive (+)

- Exps:

$$
\mathrm{C}-\mathrm{N}
$$

$$
\mathrm{H}-\mathrm{O}
$$

$$
\mathrm{C}-\mathrm{Si}
$$

- Which of the above molecules is the most polar (largest difference in polarity)?
- NOTE:
- Electroneg of $\mathrm{H}=$
- Electroneg of $\mathrm{C}=$
, $\mathrm{C}-\mathrm{H}$ bond only slightly polar: we'll consider nonpolar

Organic Chemistry

> Organic Chemistry: Study of covalent compounds of carbon.
, Valence: The number of covalent bonds an atom can form, usually equal to the number of electrons needed to fill the shell.

- Valence of: C H N O

Practice Problems:
> C can form 4 bonds.

- CH_{4}
- CCl_{4}

Organic Chemistry

Practice Problems:

> Can form 4 bonds.
$-\mathrm{CO}_{2}$

- HCN
- $\mathrm{C}_{2} \mathrm{H}_{6}$

Organic Chemistry

Practice Problems:
> C can form 4 bonds.

- $\mathrm{C}_{2} \mathrm{H}_{4}$
- $\mathrm{C}_{2} \mathrm{H}_{2}$
- $\mathrm{C}_{3} \mathrm{H}_{6}$
- Problem 1.17 p17:
$\mathrm{C}_{4} \mathrm{H}_{8}$ with 1 double bond

Organic Chemistry

Practice Problems:

, C can form 4 bonds.

- Problem 1.17 p17: $\quad \mathrm{C}_{4} \mathrm{H}_{8}$ with 1 double bond

Formulas 5 Types

1. Molecular: Tells \# of each atom type, but NOT arrangement. (Order of elements in formula: C, H, then by alphabet/atomic number (CHNOPS)).
2. Structural: Shows arrangement of each atom, with a line for each bond

- 3. Abbreviated (Condensed) Structural: Shows ALL atoms on each carbon, but w/o bonds unless it's a double bond or more than one type of atom coming off a middle C

Formulas 5 Types

4. Line Segment: Lines represent carbon framework

- Carbon at each point \& at each end
- H not shown, UNLESS the H is attached to something other than Carbon.
- 5. Skeletal: Only C \& bonds between C shown, and atoms other than H .

Examples

1. Molecular:
2. Structural:
3. Abbreviated Structural:
4. Line Segment:
5. Skeletal:

Examples

1. Molecular:

2. Structural:

3. Abbreviated Structural:
4. Line:
**NOTE: MUST \qquad (Can't put the CH_{2} attached to the double bond in parentheses)
5. Skeletal:

Examples

- $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}_{3}$
- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$

Drawing Rings

- You MUST show the ring in ALL formula types.
- Abbreviated formula: For the RING PORTION ONLY, line structure may be used, but anything COMING OFF THE RING must be abbreviated.

Example Ring Drawings:

- Original / typical Abbreviated formula:
, Alternate Abbreviated formula allowed for RINGS ONLY. : For the RING PORTION ONLY, line structure may be used, but anything COMING OFF THE RING must be abbreviated.
- Structural: For a structural formula you must still show:
- ALL bonds
- ALL carbons
- You CANNOT do a "line" for the ring

Isomers

- Same molecular formula but different arrangements of atoms
- Structural Isomers: Differ in the order in which the atoms are bonded.
- Must meet valence requirements
- Different chemical properties
- Melting Point
- Boiling Point
- $\mathrm{C}_{5} \mathrm{H}_{12}$ Has 3 isomers

Isomer Example

$\mathrm{C}_{5} \mathrm{H}_{12}$ Has 3 isomers

Isomers
The following are NOT different isomers of $\mathrm{C}_{5} \mathrm{H}_{12}$, why?

Isomer Examples

- Draw the isomers for:
- $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$ (There are 4 isomers)

Isomer Examples

- Draw the isomers for:
- $\mathrm{C}_{4} \mathrm{H}_{8}$ (There are 5 isomers)
- $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (2 isomers)

Formal Charge

- Some atoms within covalent compounds carry a formal charge.
- Areas with formal charges affect chemical reactions.
- Atom "owns" all of its unshared electrons AND 1 electron in each covalent bond.
- Simple determination: Count the \#e- electrons each atom "owns" and subtract from the \#e- in a normal atom of that element

Formal Charge Example

- Hydrogen in Hydronium ion
- Usual \# valence e- in H - \#e- "owned" above = Formal charge
- Oxygen in hydronium ion:
- Usual \# valence e- in O - \#e- "owned" above = Formal charge
- Add the formal charge, if not 0 , to the compound

Formal Charge Examples

Carbonate

Hydronbe

$$
[: \ddot{\ddot{O}-H}]
$$

Arrows

Curved	Movement of electron pairs
Curved half-head (fishhook)	Movement of single electrons
Straight	Point from reactants to products, ONE WAY reaction
Double-headed straight (Arrow on both ends)	Resonance structures (Same substance, but electrons, not atoms, in different order)

Bonding and Orbitals

- Sigma (σ) bond: Formed by ends σ bond overlapping of 2 orbitals on adjacent atoms.
- Between $s-s, s-p$, or $p-p$
- (Can be between any type of orbitals)
(a) By the overlap of two s orbitals

Bonding and Orbitals

- sp^{3} hybrid orbitals: Orbitals that are 1 part $s \& 3$ parts p
- Point towards the corners of a tetrahedron.
- Orbitals are 109.5 degrees apart
- All four sp3 orbitals are equal in energy.

Bonding and Orbitals

Tetrahedral Carbon Bonding of CH_{4}

- 4 sigma bonds between a s orbital of $\mathrm{H} \& \mathrm{an} \mathrm{sp}^{3}$ hybrid of C
- Bond \angle each H-C $-\mathrm{H}=\underline{109.5^{\circ}}$
- Tetrahedron: Plane of 2 corners \& C is perpendicular to the plane of other 2 corners \& C
- 3-D representation
- Line: In plane of paper
- Dashed wedge: behind
- Solid wedge: forward towards you

Classification

Ways to classify:

1. Shape of C skeleton
A. Acyclic. No Rings

Exp:
B. Carbocyclic. Contains a ring of CARBON atoms.

- Other atom types can be attached to the ring, but NOT in the ring itself.
Exp:
C. Heterocyclic. RING contains ≥ 1 atom that is NOT Carbon Exp:

Classification: Ways to Classify

2. Functional groups attached or within C skeleton

- Type of carbon-to-carbon bond
- Alkane. All single Carbon to Carbon bond.
- Name ends with-ane
- Alkene. 1 or more Carbon to Carbon double bonds.
- Name ends with -ene
- Alkyne. 1 or more Carbon to Carbon triple bonds.
- Name ends with -yne

Classification: Ways to Classify

- Arene. Alternating Single AND Double bonds between Carbon in a 6 Carbon ring.
- If a multiple bond is present ANYWHERE in the molecule, it is no longer considered an alkane!!!!
- Exp: If the chain is 10 carbons long with one double bond, the entire molecule is considered to be an alkene.

Classification

Ways to classify:
2. Functional groups attached or within C skeleton

- Alcohol
- Ketone
- Double bond to oxygen in middle of carbon chain
- Carboxylic Acid
- Always terminal, at end of chain or end of branch. Can be written multiple ways.
- Amine

Prior Knowledge \#1

- 1. How would you explain to someone what an organic compound is?
-2. Name 3 organic compounds.
- 3. Look around the room. What items are made primarily of organic compounds?

Prior Knowledge \#2

1. How do you determine the subscripts for ionic compounds?
2. PREDICT the formula for an ionic compound made of Beryllium (Be) and Iodine (I):
3. Electronegativity:
a. What is it?
b. Which element has the highest electronegativity?

Prior Knowledge \#3

1. Are the following ionic or covalent?

SF_{6}	FH_{4}	SrF_{2}	CH_{4}	MnO_{2}	CuS

2. Which of the above are Organic?
3. What are the formulas for the following ionic compounds?
a. Potassium Sulfate
b. Iron(III) Oxide
c. Calcium Phosphate

Prior Knowledge \#4

1. Determine what, if anything, is wrong with the following electron arrangement for carbon dioxide:

$$
: O::: C:: \ddot{O}:
$$

Prior Knowledge \#5

1. Using dashes for bonds, draw a structure for $\mathrm{C}_{3} \mathrm{H}_{4}$ that has the proper valence of 1 for each H\& 4 for each C.

Prior Knowledge \#6

- Which of the following are:

The same?
Isomers?

1. $C-C-c-C-c-c$
2.

2.

5.

3.

Prior Knowledge \#7

Draw $\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{OCH}_{3}$ in the following formula types:

Molecular
Structural
Skeletal
Line

Chapter 1: QUIZ

- Points: 30
- All problems like HW, no MC
- Topics Covered:
- Most electronegative? Electropositive?
- Electron dot \& valence for element
- Decide Polarity of bonds
- Draw polarity with arrows
- Identify ionic vs. covalent compounds based upon polarity
- Be able to draw the 5 formula types
- Know which formula is which-will specify which I want for the questions
- Isomers - draw given number, or identify

