Organic Chemistry Chapter 1 Bonding and Isomerism

Ionic Compounds

- Ionic Compounds: e-<u>are transferred;</u> Cation (+) & anion (-).
 - Opposite charge creates bond.
 - Occurs when compound is made of a <u>metal</u> & a <u>nonmetal</u>.
- Electron dot structures for:
- As Ar Rb Ga O
- Electron movement when Rb combines with O: Rb + Rb + O \rightarrow

Electronegativity

- Electropositive atoms: give up electrons and form cations (metals).
 - Francium (Fr) is the most electropositive
- Electronegative atoms: <u>gain electrons and form anions</u> (nonmetals).
 - Fluorine (F) is the most electronegative
- Li vs. Be? Most electropos:___ Most electroneg:____
- Li or Na? Most electropos:___ Most electroneg:____.

Covalent Bonds: Nonpolar

- Covalent Bonds: <u>sharing</u> of electrons; <u>similar</u> electronegativities
- Between two non-metals and/or hydrogen
- Non-polar: <u>Identical</u> atoms; <u>similar</u> electronegativities
 Exp: H₂

Shared pairs represented by <u>: or -</u>

Covalent Bonds: Polar

- Polar: <u>Unequal</u> sharing; <u>large differences</u> in electronegativity (pg 15)
 Exp: HCI
 - NOTE: H is not in same "row" or "family" as the other non-metals; it will ALWAYS be lower in electronegativity & be the atom that becomes partially positive (+)
 - Exps: C – N H – O C –Si
 - Which of the above molecules is the **most** polar (largest difference in polarity)?
 - NOTE: • Electroneg of H =
 - Electroneg of C =
 - C H bond only slightly polar: we'll consider <u>nonpolar</u>

- Organic Chemistry: Study of <u>covalent</u> compounds of <u>carbon</u>.
- Valence: The number of covalent bonds an atom can form, usually equal to the number of <u>electrons needed to fill the</u> <u>shell.</u>
 - Valence of: C H N O F

Practice Problems:

- C can form 4 bonds.
 - o CH₄
 - o CCl₄

Practice Problems:

C can form 4 bonds.

• CO₂

• HCN

 $\circ C_2H_6$

Practice Problems: > C can form 4 bonds.

- $\circ C_2H_4$
- \circ C₂H₂
- $\circ C_3H_6$

 \circ Problem 1.17 p17: C₄H₈ with 1 double bond

Practice Problems:

C can form 4 bonds.

\circ Problem 1.17 p17: C₄H₈ with 1 double bond

Formulas 5 Types

1. Molecular: Tells # of each atom type, but NOT arrangement. (Order of elements in formula: C, H, then by alphabet/atomic number (CHNOPS)).

2. Structural: Shows arrangement of each atom, with a line for each bond

Abbreviated (Condensed) Structural: Shows ALL atoms on each carbon, but w/o bonds unless it's a double bond or more than one type of atom coming off a middle C

Formulas 5 Types

4. Line Segment: Lines represent carbon framework

- Carbon at each point & at each end
- H not shown, <u>UNLESS the H is attached to</u> <u>something other than Carbon.</u>
- 5. Skeletal: Only C & bonds between C shown, and atoms other than H.

Examples

OH | CH₃CHCH₃

1. Molecular:

2. Structural:

- 3. Abbreviated Structural:
- 4. Line Segment:
- 5. Skeletal:

Examples

1. Molecular:

2. Structural:

- 3. Abbreviated Structural:
- 4. Line:

**NOTE: MUST _____ (Can't put the CH_2 attached to the double bond in parentheses)

5. Skeletal:

Examples

CH₃CCl₂CH₃

• (CH₃)₂ C (CH₂CH₃)₂

Drawing Rings

- > You MUST show the ring in ALL formula types.
- Abbreviated formula: For the RING PORTION ONLY, line structure may be used, but anything COMING OFF THE RING must be abbreviated.

Example Ring Drawings:

Original / typical Abbreviated formula:

Alternate Abbreviated formula allowed for RINGS ONLY. : For the RING PORTION ONLY, line structure may be used, but anything COMING OFF THE RING must be abbreviated.

- > Structural: For a structural formula you must still show:
 - ALL bonds
 - ALL carbons
 - You CANNOT do a "line" for the ring

Isomers

- <u>Same</u> molecular formula but <u>different</u> arrangements of atoms
- Structural Isomers: Differ in the order in which the atoms are bonded.
 - Must meet valence requirements
 - Different chemical properties
 - Melting Point
 - Boiling Point
 - C_5H_{12} Has 3 isomers

Isomer Example

 C_5H_{12} Has 3 isomers

Isomers

The following are NOT different isomers of C_5H_{12} , why?

Isomer Examples

- Draw the isomers for:
- ► C₃H₆Br₂ (There are 4 isomers)

Isomer Examples

Draw the isomers for:

 \bullet C₄H₈ (There are 5 isomers)

► C₂H₆O (2 isomers)

Formal Charge

- Some atoms within covalent compounds carry a <u>formal charge.</u>
- Areas with formal charges affect <u>chemical</u> <u>reactions</u>.
- Atom "owns" all of its <u>unshared</u> electrons AND <u>1 electron</u> in each covalent bond.
- Simple determination: Count the #e- electrons each atom "owns" and subtract from the #e- in a normal atom of that element

Formal Charge Example

Example: Hyd

$$H_3O^+$$
 $H_{-}O^-H$

Hydrogen in Hydronium ion Usual # valence e- in H - #e- "owned" above = Formal charge

- Oxygen in hydronium ion:
 - Usual # valence e- in O #e- "owned" above = Formal charge

Add the formal charge, if not 0, to the compound

Formal Charge Examples

Curved	Movement of <u>electron pairs</u>
Curved half-head (fishhook)	Movement of <u>single electrons</u>
Straight	Point from reactants to products, ONE WAY reaction
Double-headed straight (Arrow on both ends)	Resonance structures (Same substance, but electrons, not atoms, in different order)

Bonding and Orbitals

- Sigma (σ) bond: Formed by ends σ^{bond}
 <u>overlapping</u> of 2 orbitals on adjacent atoms.
 - Between s s, s p, or p p
 - (Can be between **any** type of orbitals)

(a) By the overlap of two s orbitals

Bonding and Orbitals

- sp³ hybrid orbitals: Orbitals that are <u>1 part</u>
 s & <u>3 parts</u> p
 - Point towards the corners of a <u>tetrahedron.</u>
 - Orbitals are 109.5 degrees apart
 - All four sp3 orbitals are equal in energy.

Bonding and Orbitals

Tetrahedral Carbon Bonding of CH₄

- 4 sigma bonds between a <u>s orbital</u> of H & an <u>sp³ hybrid</u> of C
- Bond \angle each H C H = <u>109.5</u>⁰
- Tetrahedron: Plane of 2 corners & C is perpendicular to the plane of other 2 corners & C
- 3–D representation
 - Line: In plane of paper
 - Dashed wedge: behind
 - Solid wedge: <u>forward</u> towards you

Classification

Ways to classify:

- 1. Shape of C skeleton
 - A. Acyclic. <u>No Rings</u>

<u>Exp:</u>

- B. Carbocyclic. Contains <u>a ring of CARBON</u> atoms.
- Other atom types can be <u>attached</u> to the ring, but NOT in the ring itself.
 Exp:
- C. Heterocyclic. <u>RING</u> contains ≥ 1 atom that is <u>NOT Carbon</u> Exp:

Classification: Ways to Classify

2. Functional groups attached or within C skeleton

- Type of carbon-to-carbon bond
 - Alkane. All single Carbon to Carbon bond.
 - Name ends with <u>-ane</u>
 - Alkene. <u>1 or more Carbon to Carbon double bonds.</u>
 - Name ends with <u>-ene</u>
 - Alkyne. <u>1 or more Carbon to Carbon triple bonds.</u>
 - Name ends with <u>-yne</u>

Classification: Ways to Classify

- Arene. Alternating <u>Single AND Double bonds</u> between Carbon in a <u>6 Carbon ring.</u>
- If a multiple bond is present ANYWHERE in the molecule, it is no longer considered an alkane!!!!
 - Exp: If the chain is 10 carbons long with <u>one</u> <u>double bond</u>, the entire molecule is considered to be an <u>alkene</u>.

Classification

Ways to classify:

- 2. Functional groups attached or within C skeleton
- Alcohol

Ketone

• Double bond to oxygen in <u>middle</u> of carbon chain

Carboxylic Acid

 Always terminal, at end of chain or end of branch. Can be written multiple ways.

Amine

I. How would you explain to someone what an organic compound is?

> 2. Name 3 organic compounds.

3. Look around the room. What items are made primarily of organic compounds?

- 1. How do you determine the subscripts for ionic compounds?
- 2. **PREDICT** the formula for an ionic compound made of Beryllium (Be) and Iodine (I):
- 3. Electronegativity:
 a. What is it?

b. Which element has the highest electronegativity?

- 1. Are the following ionic or covalent?
 - SF_6 FH_4 SrF_2 CH_4 MnO_2 CuS
- 2. Which of the above are Organic?
- 3. What are the formulas for the following ionic compounds?
 - a. Potassium Sulfate
 - b. Iron(III) Oxide
 - c. Calcium Phosphate

1. Determine what, if anything, is wrong with the following electron arrangement for carbon dioxide:

:O:::C::Ö:

1. Using dashes for bonds, draw a structure for C_3H_4 that has the proper valence of 1 for each H & 4 for each C.

- Which of the following are:
- The same?
- Isomers?

Draw CH₂BrCH₂OCH₃ in the following formula types:

- Molecular
- Structural
- Skeletal
 - Line

Chapter 1: QUIZ

- Points: 30
- All problems like HW, no MC
- Topics Covered:
 - Most electronegative? Electropositive?
 - Electron dot & valence for element
 - Decide Polarity of bonds
 - Draw polarity with arrows
 - Identify ionic vs. covalent compounds based upon polarity
 - Be able to draw the 5 formula types
 - Know which formula is which-will specify which I want for the questions
 - Isomers draw given number, or identify