Chapter 3: Review Guide Reactions of Alkenes

NOTES:

- Use skeletal OR abbreviated formulas for all problems.
- Include reactants, organic and inorganic products, and catalysts, if applicable.
- If appropriate, show whether the cis or trans form of the product is produced.
- Write an equation for the reaction of 2,3-dimtheyl-1-pentene with each of the following.

Reaction Type	Reaction		
Water	C= c-c-c + H2O -> c-c-c-c		
Fluorine	c=i-i-c-c + F2 -> i-i-c-c-c		
Hydrogen	c=c-c-c + H2 -> c-c-c		
НСІ	e= c-c-c+ HCI -> c-c-c		
Ozone	c=i-i-c-c + 0=i-i-c-c		
KMnO ₄	C C C C + KMnQy -> C-C-C-C + NnOz + KON Drown Ppt.		

2. Write an equation for the reaction of 2, 4-hexadiene and 1 mole of Fluorine.

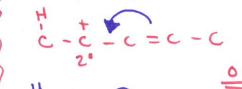
3. Write an equation for the reaction of 2, 4-hexadiene and 2 moles of Fluorine

C-C=C-C=C-C + 2f2 -> C-C-c-c-c-c

4. Write an equation for the hydrogenation of 1-methyl-1-cyclopropene.

5. For the reaction of 1-hexene with water, show the two carbocations that potentially could be formed as an intermediary.

C= C- C - C - C


6. Fill in the table below regarding carbocations.

Carbocation	Drawing/Example	Level of Stability
Unique methyl	H - C+	Least
1° primary	H - C +	
2° secondary	R-C+ H	
3° tertiary	R-C+	most

7. Which carbocation above would most likely be the final "desired" product of a reaction?

8. Draw the 2 possible carbocations, showing resonance, for 1-3-pentadiene.

C=c-c=c-C

